CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD CENTRAL VALLEY REGION # WASTE DISCHARGE REQUIREMENTS ORDER NO. R5-2010-____ FOR CITY OF REEDLEY WASTEWATER TREATMENT FACILITY FRESNO COUNTY The California Regional Water Quality Control Board, Central Valley Region, (hereafter Central Valley Water Board), finds that: - 1. The City of Reedley (City or Discharger) owns and operates a wastewater treatment facility (WWTF) located in sections 33 and 34, Township 15 South, Range 23 East, MDB&M, in Fresno County. - 2. Waste Discharge Requirements (WDRs) Order No. 5-01-257, adopted by the Central Valley Water Board on 7 December 2001, for the City prescribes requirements for a monthly average discharge flow of 3.5 million gallons per day (mgd) of wastewater to approximately 39 acres of percolation ponds. The Order, as a National Pollutant Discharge Elimination System (NPDES) Permit No. CA0081230, also authorizes a monthly average discharge flow of 1.75 mgd of wastewater to the Kings River. - 3. Special Order No. R5-2003-0156, adopted on 17 October 2003, amended Order No. 5-01-257 by delaying compliance dates for two provisions of Order No. 5-01-257. - 4. Special Order No. R5-2006-0105, adopted on 22 September 2006 rescinded the NPDES Permit No. CA0081230 portion of Order No. 5-01-257. - 5. On September 2007, Carollo Engineers, on behalf of the City, submitted a Report of Waste Discharge (RWD) for a proposed WWTF expansion from 3.0 mgd to 5.0 mgd and discharge of undisinfected secondary wastewater to land only. - 6. WDRs Order No. 5-01-257 needs to be updated to ensure that the discharge is consistent with Central Valley Water Board plans and policies and prescribe requirements that reflect changes the City has made to its WWTF. ### **Wastewater Treatment Facility** 7. Construction of the expanded WWTF was completed in November 2009. The expanded WWTF consists of headworks, two oxidation ditches, one anoxic basin, four secondary clarifiers, three return sludge holding tanks, and three centrifuges. Undisinfected secondary effluent is discharged to six percolation ponds adjacent to the Kings River (approximately 36 acres of percolation ponds). A site map of the WWTF is shown on Attachment A and a process flow schematic is shown on Attachment B, both of which are attached hereto and made part of this Order by reference. - 8. A water balance included in the September 2007 RWD calculated, based on a 100-year wet year, the storage/disposal capacity of the percolation ponds assuming all the percolation ponds would be in use at the same time, not accounting for instances when a percolation pond might need to be taken out of service for maintenance and/or repairs. The water balance indicated the 36 acres of percolation available at the time would provide enough storage/disposal capacity for a discharge flow of 4.69 mgd. The City reconfigured its ponds and submitted a revised water balance in April 2009 shows that the capacity of its now existing 37.46 acres of ponds is 5.0 mgd. The revised water balance does not account for instances when percolation ponds are out of service for maintenance or, as discussed in more detail in Finding 37 below, when Ponds 4 and 5 are out of service due to high river flows. Therefore, this Order limits the discharge flow to 4.69 mgd and includes a provision requiring the Discharger to demonstrate the WWTF has sufficient treatment, storage, and disposal capacity before the discharge flow limit can be increased to 5.0 mgd. - 9. Based on data contained in the City's Self-Monitoring Reports (SMRs) from January 2008 through March 2009, the monthly average discharge flows range from 0.86 to 3.51 mgd. Also, the monthly average influent and effluent characteristics for constituents/parameters of concern in the discharge from January 2008 through October 2009 is as follows: | | | Average | Average | |---------------------------------|--------------|----------|-----------------| | Constituents/Parameters | <u>Units</u> | Influent | Effluent | | Biochemical Oxygen Demand (BOD) | mg/L | 207 | 8 | | Total Suspended Solids (TSS) | mg/L | 230 | 9 | | Electrical Conductivity (EC) | µmhos/cm | 826 | 602 | | рН | pH Units | 7.5 | 7 | | Total Kjeldahl Nitrogen (TKN) | mg/L | | 5 | | Total Nitrogen (TN) | mg/L | | 10 | | Total Dissolved Solids (TDS) | mg/L | | 358 | | Sodium | mg/L | | 67 | | Chloride | mg/L | | 53 | 10. Monthly average influent and effluent data from November 2009 to May 2010 after the expansion of the WWTF is presented below. | | | Average | Average | |-------------------------|--------------|-----------------|-----------------| | Constituents/Parameters | <u>Units</u> | <u>Influent</u> | <u>Effluent</u> | | BOD | mg/L | 262 | 7 | | TSS | mg/L | 257 | 6 | | EC | µmhos/cm | 778 | 566 | | pH | pH Units | 7.5 | 7.2 | | TKN | mg/L | | 2 | | TN | mg/L | | 10 | | | | Average | Average | |-------------------------|--------------|----------|-----------------| | Constituents/Parameters | <u>Units</u> | Influent | Effluent | | TDS | mg/L | | 507 | | Sodium | mg/L | | 77 | | Chloride | mg/L | | 62 | 11. Treated wastewater consistently meets the monthly average BOD and TSS effluent limits of 40 mg/L established in WDRs Order No. 5-01-257. The average effluent total nitrogen concentration is approximately the same numerical value as the Maximum Contaminant Level (MCL) of 10 mg/L for nitrate as nitrogen (hereafter "nitrate (as N)") in Title 22, California Code of Regulations (CCR), section 64431. Given nitrogen losses in the percolation ponds and as the effluent percolates to groundwater, the nitrate (as N) concentration in groundwater will not exceed the MCL. # **Sludge Management and Disposal** - 12. Sludge as used herein means the solid, semisolid, and liquid residues generated during the treatment of industrial and domestic sewage in a municipal WWTF. Sludge includes solids removed during primary, secondary, or advanced wastewater treatment processes, but no grit or screening material generated during preliminary treatment. - 13. Historically, sludge handling practices included discharging sludge to unlined sludge drying beds; a practice that was conducted for over twenty years and has adversely impacted shallow groundwater. The Discharge monitors groundwater in the immediate WWTF vicinity via a network of 14 shallow monitoring wells (MW). Wells monitoring the sludge handling areas include MW-1, MW-2, MW-3, MW-15, MW-18, and MW-21. The 1999 and 2000 quarterly groundwater monitoring reports indicated average nitrate (as N) concentrations in MW-1, MW-2, MW-3, MW-15, MW-18, and MW-21 of 17, 28, 28, 19, 12, and 19 mg/L, respectively, well above the MCL of 10 mg/L. All these wells are near the north end of the WWTF, near the discontinued sludge drying operations. - 14. In 1996, the City changed its sludge handling practices by installing two centrifuge units and hauling its sludge off-site. - 15. In late 1997, the City excavated and then spread high nitrogen soils over the area where the sludge storage area and sludge drying beds were. In March 1998, the City planted the area with Eucalyptus trees in an effort to phytoremediate site soils and groundwater. - 16. Currently, one older centrifuge unit is in use, along with two new centrifuge units that were installed as part of the WWTF expansion. Sludge generated at the WWTF will continue to be hauled off-site and discharged to McCarthy Family Farms Inc., near Corcoran, California, for composting under appropriate WDRs. 17. The WWTF does have approximately 1.5 acres of asphalt-lined sludge drying beds. The asphalt-lined sludge drying beds are only used in case of emergency. # **Pretreatment Program** - 18. The City implements an industrial pretreatment program. Through its program, the City regulates two dischargers that are classified as significant industrial users (SIUs) as defined by Title 40 of the Code of Federal Regulations (CFR) section 403.3(v). Both of the SIUs are categorical industrial users (CIUs). The City also monitors and permits approximately 53 additional nondomestic dischargers. - 19. Guardian Industries Corp., is a mirror manufacturing facility that is a CIU. Wastewater produced at this facility includes mirror process wastewater, hot wash from the laminating process, and glass-edging process wastewater. Pretreatment consists of cerium settling through small tubs and silver recovery unit utilizing ultrafiltration. - 20. Safety-Kleen Systems, Inc., Reedley Recycle Center, is a centralized waste treatment facility that specializes in recycle and recovery of solvents and fluids for reuse and is also a CIU. Wastewater receives treatment prior to being discharge to the City's sewer. # **Sanitary Sewer Overflows** - 21. A "sanitary sewer overflow" is defined as a discharge to ground or surface water from the sanitary sewer system at any point upstream of the treatment facility. Temporary storage and conveyance facilities (such as wet wells, regulated impoundments, tanks, highlines, etc.) may be part of a sanitary sewer system and discharges to these facilities are not considered sanitary sewer overflows, provided that the waste is fully contained within these temporary storage/conveyance facilities. - 22. On 2 May 2006, the State Water Resources Control Board (hereafter State Water Board) adopted a General Sanitary Sewer Systems Order (State Water Board Water Quality Order No. 2006-0003-DWQ, Statewide General Waste Discharge Requirements for Sanitary Sewer Systems) (General Order). The General Order requires all public agencies that own or operate sanitary sewer systems greater than one mile in length to comply with this order. The Discharger's collection system is greater than one mile in length; therefore, the Discharger applied for, and is covered by, the General Order. # **Water Recycling** 23. On 3 February 2009, the State Water Board adopted Resolution No. 2009-0011, Adoption of a Policy for Water Quality Control for Recycled Water
(Recycled Water Policy). The Recycled Water Policy promotes the use of recycled water to achieve sustainable local water supplies and reduce greenhouse gases. - 24. On 23 April 2009, the Central Valley Water Board adopted Resolution No. R5-2009-0028, In Support of Regionalization, Reclamation, Recycling and Conservation for Wastewater Treatment Plant (Regionalization Resolution). The Regionalization Resolution encourages water recycling, water conservation, and regionalization of wastewater treatment facilities. It requires discharges to document: - a. Effort to promote new or expanded wastewater recycling opportunities and programs; - b. Water conservation measures; and - c. Regional wastewater management opportunities and solutions (e.g. regionalization). - 25. In 1997, a Feasibility Study was conducted by Provost and Pritchard Engineering Group, Inc. which investigated and evaluated five recycling alternatives: direct irrigation on neighboring privately-owned farmland, discharge to the Consolidated Irrigation District canal, landscape and golf course irrigation, irrigation of farmland owned and operated by the University of California Kearney Agricultural Center, and irrigation of City-owned farmland at the WWTF. The City determined that effluent recycling for irrigation to be infeasible due to the cost involved in providing additional treatment, and the University of California did not show an interest in obtaining treated wastewater for irrigation. - 26. The recycling alternatives in the 1997 Feasibility Study were reevaluated by the City in the 2006 Master Plan. Again it was concluded that effluent recycling was infeasible because the WWTF was surrounded by orchards and vineyards, requiring higher quality water than what the WWTF can produce and the 20 acres of City land would instead be used to construct percolation ponds. - 27. The City needs to evaluate future land disposal options and conduct studies to promote new or expanded wastewater recycling opportunities in accordance with the Recycled Water Policy No. 2009-0011 and Regionalization Resolution No. R5-2009-0028. A provision requiring the City to document its efforts to promote new or expanded wastewater recycling and reclamation opportunities is included in this Order. # **Site-Specific Conditions** 28. The WWTF and percolation ponds are in an arid climate characterized by dry summers and mild winters. The rainy season generally extends from November through March. Occasional rains occur during spring and fall months, but summer months are dry. Average annual evaporation in the discharge area is about 65 inches, according to information published by the California Department of Water Resources (DWR). The average annual precipitation in the discharge area is about 11 inches, according to Western Regional Climate Center. - 29. Soils in the vicinity of the WWTF are predominately Hanford Fine Sandy Loam, followed by Tujunga Loamy Sand, according to the Web Soil Survey published by the United States Department of Agriculture Natural Resources Conservation Service. Hanford Fine Sandy Loam and Tujunga Loamy Sand have been assigned a land capacity classification of 1 and 4S, respectively. These soils have slight to severe limitations that restrict the choice of plants or that require very careful conservation management, or both. These soils have limitations within the root zone, such as shallowness of the root zone, a high content of stones, a low available water capacity, low fertility, or excessive salinity. - 30. Land uses in the vicinity of the WWTF are primarily agricultural. There are residential developments to the north and northeast of the WWTF. The primary crops to the west and northwest are peaches and nectarines followed by plums, pears and some vineyards, according to the Fresno County 2000 Land Use Map published by the DWR. - 31. According to the Federal Emergency Management Agency maps (Map Number 06019C2680H) the eastern portion of the WWTF is located within Zone X, an area outside of the 1% annual chance of inundation with water depth of one-foot or less. - 32. The Discharger is not required to obtain coverage under a National Pollutant Discharge Elimination System General Industrial Storm Water Permit for the WWTF because all storm water runoff is retain onsite and does not discharge to a water of the United States. #### **Groundwater Considerations** - 33. Shallow groundwater beneath the WWTF varies from 15 to over 30 feet below ground surface (bgs) based on groundwater monitoring data from 1999 to 2001. This variation is due to surface relief rather than a steep groundwater gradient. Groundwater generally flows southeast, towards the Kings River. Data from the early 1990s, the end of a six-year drought, indicated a northwesterly gradient away from the Kings River. - 34. According to information in *Lines of Equal Elevation in Wells in Unconfined Aquifer*, published by the DWR in Spring 2004 regional groundwater flows southwesterly and is found at approximately 70 ft bgs. - 35. A Water-Level Elevations and Direction of Groundwater Flow Map included in the September 2007 RWD indicates that groundwater flows in a northwest direction based on groundwater monitoring data from the 2007 third quarter groundwater monitoring report. Groundwater flow maps from the 2005 fourth quarter and the 1999 first quarter groundwater monitoring reports show water flowing to the southeast towards the Kings River. - 36. Mounding and seasonal fluctuations in the groundwater table depicted by groundwater flow maps in the September 2007 RWD make it clear that groundwater flow direction varies. - 37. Groundwater elevation data and staff observations indicate that high Kings River flows during the irrigation season (generally April through September) can result in groundwater mounding that eliminates the separation between the inverts of Ponds 4 and 5 and groundwater. This may reduce the effectiveness of pathogen removal as effluent migrates through the soil to groundwater. It is appropriate to limit the use of Ponds 4 and 5 to the non-irrigation season and to times when the separation of the Ponds' inverts and underlying groundwater is less than five feet. - 38. The quality of groundwater in the vicinity of the percolation ponds is depicted by groundwater monitoring wells MW-4, MW-5, MW-6, and MW-16. Based on groundwater monitoring data from February 1997 through 2010, the average EC (in μmhos/cm), nitrate (as NO₃, in mg/L) and chloride (in mg/L) concentrations for these monitoring wells is as follows MW-4 (658, 26, 62), MW-5 (691, 25, 55), MW-6 (649, 24, 61), and MW-16 (645, 28, 57), respectively. - 39. EC in MW-4 fluctuated with a slight downward trend. EC in MW-5 is fairly stable through out the years until 2008 when EC decreased. EC in MW-6 and MW-16 is stable with no increase or decrease. EC in monitoring wells MW-4, MW-5, MW-6, and MW-16 are all below 1,000 µmhos/cm. - 40. Nitrate (as NO₃) concentrations for MW-4, MW-5, and MW-6 fluctuate with no apparent pattern. Nitrate (as NO₃) concentrations are below the MCL of 45 mg/L. Nitrate (as NO₃) concentrations in MW-16 fluctuated generally above the MCL of 45 mg/L. - 41. Chloride in MW-4, MW-5, MW-6, and MW-16 is stable with no increase or decrease in concentration. - 42. The Discharger submitted a technical report, *Groundwater Assessment Wastewater Treatment Facility* (GWA), in August 2001. The GWA report evaluated existing groundwater data and identified monitoring wells MW-4, MW-5, MW-6, and MW-16 as being effluent dominated since their location is adjacent to the percolation ponds. The GWA report further stated that monitoring wells MW-1, MW-2, MW-3, and MW-21 are impacted from the historical use of unlined sludge drying beds and that the northern extent of nitrate pollution had not been defined. - 43. Based on groundwater monitoring data from February 1997 through March 2010, the average EC (in μmhos/cm), nitrate (as NO₃, in mg/L) and chloride (in mg/L) concentrations for monitoring wells in the vicinity of the abandoned sludge drying beds (MW-1, MW-2, MW-3, MW-15, MW-21, and MW-22) are as follows, MW-1 (1047, 92, - 83), MW-2 (729, 86, 58), MW-3 (966, 134, 51), MW-15 (807, 44, 70), MW-21 (1045, 74, 62), and MW-22 (796, 49, 76), respectively. - 44. EC in MW-1 fluctuated, and then decreased slowly from December 2008 through May 2010. EC in MW-2 and MW-15 has gradually been decreasing. EC in MW-3 has generally not changed over a 13-year period. EC in MW-21 also fluctuated, and then decreased from 2007 through 2009. EC in MW-22 has been increasing since 2001. - 45. Nitrate (as NO₃) concentrations for MW-1, MW-2, MW-3, MW-21, and MW-22 continue to exceed the nitrate (as NO₃) MCL of 45 mg/L. MW-15 has had nitrate (as NO₃) concentrations below the MCL since 2004. - 46. Chloride concentrations in MW-1 fluctuate and in MW-2 the concentrations have been stable since 1997. Chloride concentrations in MW-3 and MW-15 have slightly decreased in mid-2004 and have been stable since then. Chloride concentrations in MW-21 fluctuate but show an overall decreasing trend and in MW-22 concentrations have increased. - 47. Impacted soils that were spread over the abandoned sludge drying beds have been tested for nitrate (as N) concentrations twice yearly since 2002 (Sites 1 through 6) and at three depth intervals (4, 6, and 8 ft bgs). The ranges in nitrate (as N), TKN, and TN for these Sites are as follows: | | Nitrate (as N in mg/kg) | TKN (in mg/kg) | TN (in mg/kg) | |---------------|-------------------------|----------------|---------------| | Site 1 at 4ft | 1-4 | 52-1400 | 52-1400 | | Site 1 at 6ft | 1-3 | 88-500 | 88-500 | | Site 1 at 8ft | 1-4 | 45-400 | 47-400 | | Site 2 at 4ft | 6-130 | 58-1400 | 129-1400 | | Site 2 at 6ft | 1-75 | 52-550 | 57-625 | | Site 2 at 8ft | 1-61 | 22-300 | 59-307 | | Site 3 at 4ft | 2-56 | 140-1100 | 162-1156 | | Site 3 at 6ft | 1-11 | 10-500 | 10-511 | | Site 3 at 8ft | 2-38 | 75-400 |
75-409 | | Site 4 at 4ft | 3-59 | 99-1000 | 111-1006 | | Site 4 at 6ft | 3-103 | 60-1400 | 89-1503 | | Site 4 at 8ft | 1-38 | 98-900 | 111-938 | | Site 5 at 4ft | 2-84 | 160-1400 | 169-1484 | | Site 5 at 6ft | 1-15 | 56-400 | 64-401 | | Site 5 at 8ft | 1-12 | 43-500 | 46-501 | | Site 6 at 4ft | 5-63 | 100-1200 | 110-1207 | | Site 6 at 6ft | 1-93 | 100-1300 | 142-1301 | | Site 6 at 8ft | 4-92 | 140-2200 | 200-2228 | - 48. The City needs to evaluate the effectiveness of its phytoremediation project and groundwater cleanup strategy. A provision requiring the submittal of a technical report regarding this is included in this Order. - 49. The City gets its source water from a network of six water supply wells. Based on the 2008 SMRs, the flow-weighted average for source water EC was reported as 221 µmhos/cm. # Basin Plan, Beneficial Uses, and Water Quality Objectives - 50. The Water Quality Control Plan for the Tulare Lake Basin, Second Edition, revised January 2004 (Basin Plan) designates beneficial uses, establishes narrative and numerical water quality objectives, contains implementation plans and policies for protecting all waters of the Basin, and incorporates, by reference, plans and policies of the State Water Board. Pursuant to section 13263(a) of the California Water Code (CWC), these requirements implement the Basin Plan. - 51. The Basin Plan specifies that municipal and domestic wastewater dischargers will be required to reclaim and reuse wastewater whenever reclamation is feasible. - 52. The Basin Plan finds that proliferation of small treatment plants serving individual communities in developed areas is undesirable and most small communities do not have adequate resources to properly manage, treat, and dispose of wastewater in an urban environment. The policies on consolidation are as follows: - a. Adjoining small communities should combine resources to construct and operate a joint or regional wastewater treatment plant. - Consolidation should be cost-effective, and consider benefits to the ecology, treatment efficiencies, and effective current and future reuse opportunities of the waters. - c. Unsewered areas and new developments adjacent to or within existing wastewater collection system service areas should be connected to the system. Developments not within a service area but within the projected sphere of influence of a regional system should be developed in a manner that provides for future connection to the system when it becomes available. - d. Each municipal collection and treatment facility should act as a regional facility and provide sewerage services within its sphere of influence. The municipality must be equitably compensated for these services. - 53. The WWTF is in Detailed Analysis Unit (DAU) No. 239 within the Kings Basin hydrologic unit. The Basin Plan identifies the beneficial uses of groundwater in the DAU as - municipal and domestic supply, agricultural supply, industrial service supply, and industrial process supply. - 54. The WWTF is in the Alta hydrologic area (No. 551.60) of the South Valley Floor Hydrologic Unit, as depicted on interagency hydrologic maps prepared by the DWR in August 1986. The WWTF is adjacent to the Kings River. - 55. The Basin Plan includes a water quality objective for chemical constituents that, at a minimum, require waters designated as domestic or municipal supply to meet the MCLs specified in Title 22 of the California Code of Regulations (CCR). The Basin Plan recognizes that the Central Valley Water Board may apply limits more stringent than MCLs to ensure that waters do not contain chemical constituents in concentrations that adversely affect beneficial uses. - 56. The Basin Plan establishes narrative water quality objectives for chemical constituents, taste and odors, and toxicity. The toxicity objective, in summary, requires that groundwater be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life associated with designated beneficial uses. Quantifying a narrative water quality objective requires a site-specific evaluation of those constituents that have the potential to impact water quality and beneficial uses. - 57. The Basin Plan identifies the greatest long-term problem facing the entire Tulare Lake Basin as the increase in salinity in groundwater, which has accelerated due to the intensive use of soil and water resources by irrigated agriculture. The Basin Plan recognizes that degradation is unavoidable until there is a long-term solution to the salt imbalance. Until then, the Basin Plan establishes several salt management requirements, including: - a. The incremental increase in salts from use and treatment must be controlled to the extent possible. The maximum EC of effluent discharged to land shall not exceed the EC of the source water plus 500 µmhos/cm. When the source water is from more than one source, the EC shall be a weighted average of all sources. - b. Discharges to areas that may recharge to good quality groundwater shall not exceed an EC of 1,000 µmhos/cm and a boron content of 1.0 mg/L. - 58. The Basin Plan requires municipal WWTFs that discharge to land to comply with treatment performance standards for BOD and TSS. WWTFs that preclude public access and are greater than 1 mgd must provide removal of 80 percent or reduction to 40 mg/L, whichever is more restrictive, for both BOD and TSS. # **Antidegradation Analysis** - 59. State Water Board Resolution No. 68-16 ("Policy with Respect to Maintaining High Quality Water of the State") (hereafter Resolution No. 68-16) prohibits degradation of groundwater unless it has been shown that: - a. The degradation is consistent with the maximum benefits to the people of the State; - b. The degradation will not unreasonably affect present and anticipated future beneficial uses; - c. The degradation does not result in water quality less than that prescribed in State and regional policies, including violation of one or more water quality objectives, and - d. The Discharger employs Best Practicable Treatment or Control (BPTC) practices to minimize degradation. - 60. Degradation of groundwater by some of the typical waste constituents released with discharge from a municipal wastewater utility after effective source control, treatment, and control is consistent with maximum benefit to the people of the State. The technology, energy, and waste management advantages of municipal utility service far exceed any benefits derived from a community otherwise reliant on numerous concentrated individual wastewater systems, and the impacts on water quality will be substantially less. Economic prosperity of valley communities and associated industry is of maximum benefit to the people of the State, and therefore sufficient reason to accommodate planned growth and some groundwater degradation provided terms of the Basin Plan are met. #### Terms and Conditions 61. Constituents of concern in the discharge that have the potential to degrade groundwater include primarily salts and nitrogen in the form of nitrate. This Order establishes terms and conditions to ensure that any degradation that results from the discharge does not unreasonably affect present and anticipated uses and does not result in water quality less than that prescribed in State and regional policies and complies with applicable water quality objectives. Specific terms and conditions follow: - a. For salinity, the Basin Plan contains effluent limits of EC of source water plus 500 µmhos/cm and 1,000 µmhos/cm maximum for discharges to areas that may recharge to good quality groundwater. As the Tulare Lake Basin is a closed basin, these limits are designed to control the rate of groundwater degradation with respect to salinity. These effluent limits reflect BPTC for salinity control and are included in this Order. The Order also contains Groundwater Limitations that limit groundwater EC degradation to the more stringent of: (1) the numerical MCLs in Title 22, CCR, section 64449, to protect the MUN designated beneficial use of groundwater, or (2) narratively to the level necessary to protect the AGR designated beneficial use of groundwater. Crops grown in the area (Finding 30) generally require irrigation water with an EC of 1000 µmhos/cm or less. It is unknown whether more salt sensitive crops such as beans or strawberries could be grown near the WWTF; however, given the quality of the effluent (average EC 600 µmhos/cm or less) it is unlikely that the discharge will cause the groundwater EC to exceed 700 umhos/cm, which is the most stringent AGR objective. Authorized EC degradation will result in water quality that complies with applicable water quality objectives and protects beneficial. - b. Regarding nitrate (as N), the expanded WWTF is designed to remove total nitrogen and this Order includes effluent limits that require the effluent total nitrogen to be 10 mg/L or less. To protect the MUN designated beneficial use, Groundwater Limitations proscribe the discharge from increasing groundwater nitrate (as N) concentration beyond the MCL of 10 mg/L. Given that there will be nitrogen losses in the percolation ponds and as treated effluent percolates to groundwater, the nitrate (as N) concentration in effluent reaching groundwater will be less than the MCL of 10 mg/L. Therefore, any degradation that results from the discharge will result in groundwater water quality that complies with applicable water quality objectives and protects beneficial uses. - c. Regarding other constituents, coliform in groundwater is limited to the Basin Plan water quality objective of less than 2.2 MPN/100 mL or essentially non-detect. Taste or odor-producing constituents, toxic substances, and other constituents are limited to concentrations such that they do not cause nuisance or adversely affect beneficial uses of groundwater. - d. This Order includes extensive influent,
effluent, and groundwater monitoring requirements to verify that the discharge does not cause violations of water quality objectives or impairment of beneficial uses. #### Treatment and Control Practices - 62. The WWTF described in Findings 7 through 11, will provide treatment and control of the discharge that incorporates: - Secondary treatment of wastewater; - b. Wastewater treatment for nitrogen removal; - c. Mechanical sludge dewatering; - d. Sludge hauled off-site; - e. Pretreatment permits for significant industrial users; - f. An operation and maintenance manual; - g. Certified operators to ensure proper operation and maintenance; and - h. Source water, discharge, and groundwater monitoring. - 63. Implementation of the above treatment, operation, maintenance, and monitoring measures, as required by this Order, represents the implementation of BPTC of the discharge. #### **Conclusions** 64. Based on Findings 60 through 63, the authorized discharge meets the requirements Resolution 68-16, as described in Finding 59. #### **CEQA** - 65. The City of Reedley adopted an Environmental Impact Report (EIR) (SCH # 2006021132) in accordance with the California Environmental Quality Act (CEQA) and filed a Notice of Determination on 24 May 2007 for an increase in capacity from 3.0 mgd to 5.0 mgd for Phase I and then up to 7.0 mgd for Phase II. - 66. Central Valley Water Board staff reviewed the Final EIR and concurs with the conclusion that the project would be an improvement over the existing discharge and that the discharge would not have a significant impact on water quality, particularly because the effluent quality will improve. This Order includes effluent limits for BOD, TSS, EC, and nitrogen. Compliance with these will mitigate any significant impacts to water quality. #### Title 27 - 67. CWC section 13173 defines designated waste as either: - Hazardous waste that has been granted a variance from hazardous waste management requirements pursuant to section 25143 of the Health and Safety Code. - b. Non-hazardous waste that consists of, or contains, pollutants that, under ambient environmental conditions at a waste management unit, could be released in concentrations exceeding applicable water quality objectives or that could reasonably be expected to affect beneficial uses of the water of the state contained in the appropriate water quality control plan. - 68. Pursuant to section 20090(a) of Title 27 CCR, the discharge of domestic sewage or treated wastewater associated with municipal wastewater treatment plants is exempt from Title 27, provided any resulting degradation of groundwater is in accordance with the Basin Plan and the waste need not be managed as a hazardous waste. - 69. None of the wastes regulated by the proposed Order are hazardous wastes or require to be treated as hazardous wastes. As described under the Antidegradation Analysis section above, the authorized discharge of treated wastewater to land will not cause exceedances of Basin Plan requirements or applicable water quality objectives, and are thus exempt from Title 27 pursuant to section 20090(a). - 70. As described in Findings 12 through 17 and 42 through 48, historical sludge handling practices included the discharge of sludge to unlined sludge drying beds and storage of biosolids at an unlined area in the north part of the WWTF property. Sludge drying and storage practices impacted shallow groundwater at the north end of the WWTF with salts and nitrate (as N). The Discharger discontinued these practices and is continuing a project to assess and remediate the groundwater plume. Additional assessment of remediation options is necessary to optimize the management of groundwater degradation caused by historic sludge handling practices. - 71. The Discharger now mechanically dewaters its sludge and hauls it off-site to McCarthy Family Farm for composting under appropriate WDRs. Sludge is only stored onsite for short periods in a lined drying bed during emergencies. Short-term storage in a lined drying bed is not expected to result in degradation of groundwater quality. # **Other Regulatory Considerations** 72. The United States Environmental Protection Agency (EPA) has promulgated biosolids reuse regulations in Title 40, CFR, Part 503, Standards for the Use or Disposal of Sewage Sludge, which establish management criteria for protection of ground and surface waters, sets limits and application rates for heavy metals, and establishes stabilization and disinfection criteria. The Discharger may have separate and/or additional compliance, reporting, and permitting responsibilities to EPA. # **General Findings** 73. Pursuant to CWC section 13263(g), discharge is a privilege, not a right, and adoption of this Order does not create a vested right to continue the discharge. - 74. The Central Valley Water Board will review this Order periodically and will revise requirements when necessary. - 75. CWC section 13267(b) states that: In conducting an investigation specified in subdivision (a), the Central Valley Water Board may require that any person who has discharged, discharges, or is suspected of having discharged or discharging, or who proposes to discharge waste within its region, or any citizen or domiciliary, or political agency or entity of this state who has discharged, discharges, or is suspected of having discharged or discharging, or who proposes to discharge, waste outside of its region that could affect the quality of waters within its region shall furnish, under penalty of perjury, technical or monitoring program reports which the Central Valley Water Board requires. The burden, including costs, of these reports shall bear a reasonable relationship to the need for the report and the benefits to be obtained from the reports. In requiring those reports, the Central Valley Water Board shall provide the person with a written explanation with regard to the need for the reports, and shall identify the evidence that supports requiring that person to provide the reports. - 76. The technical reports required by this Order and monitoring reports required by the attached Monitoring and Reporting Program (MRP) No. R5-2010-___ are necessary to assure compliance with these waste discharge requirements. The Discharger operates the WWTF that discharges the waste subject to this Order. - 77. DWR set standards for the construction and destruction of groundwater wells, as described in California Well Standards Bulletin 74-90 (June 1991) and Water Well Standards: State of California Bulletin 94-81 (December 1981). These standards, and any more stringent standards adopted by the State or county pursuant to CWC section 13801, apply to all monitoring wells. #### **Public Notice** - 78. All the above and the supplemental information and details in the attached Information Sheet, which is incorporated by reference herein, were considered in establishing the following conditions of discharge. - 79. The Discharger and interested agencies and persons have been notified of the intent to prescribe waste discharge requirements for this discharge, and they have been provided an opportunity for a public hearing and an opportunity to submit their written views and recommendations. - 80. All comments pertaining to the discharge were heard and considered in a public meeting. **IT IS HEREBY ORDERED** that Waste Discharge Requirements Order No. 5-01-257 and Special Order Nos. R5-2003-0156 and R5-2006-0105 be rescinded and that, pursuant to sections 13263 and 13267 of the California Water Code, the City of Reedley and its agents, successors, and assigns, in order to meet the provisions contained in Division 7 of the CWC and regulations adopted thereunder, shall comply with the following: #### A. Prohibitions - 1. Discharge of waste to surface waters or surface water drainage courses is prohibited. - 2. Bypass or overflow of untreated wastes, except as allowed by Standard Provision E.2 in *Standard Provisions and Reporting Requirements for Waste Discharge Requirements*, dated 1 March 1991, is prohibited. - 3. Discharge of waste classified as 'hazardous', as defined in section 2521(a) of Title 23, CCR, section 2510 et seq., is prohibited. Discharge of waste classified as 'designated', as defined in CWC section 13173, in a manner that causes violation of groundwater limitations, is prohibited. #### **B.** Effluent Limitations 1. Effluent shall not exceed the following limitations: | <u>Constituent</u> | <u>Units</u> | Monthly Average | Daily Maximum | |-------------------------------|--------------|-----------------|---------------| | BOD ₅ ¹ | mg/L | 40 | 80 | | TSS ² | mg/L | 40 | 80 | Five-day biochemical oxygen demand - The arithmetic mean of BOD and TSS in effluent samples collected over a monthly period shall not exceed 20 percent of the arithmetic mean of the values for influent samples collected at approximately the same times during the same period (80 percent removal). - 3. The 12-month rolling average EC of the discharge shall not exceed the 12-month rolling average EC of the source water plus 500 µmhos/cm. Compliance with this effluent limitation shall be determined monthly. - 4. The monthly average total nitrogen concentration of the discharge shall not exceed 10 mg/L. Total suspended solids # C. Discharge Specifications - 1. The monthly average discharge flow shall not exceed 4.69 mgd. Following compliance with Provision F.18, the monthly average discharge flow shall not exceed 5.0 mgd. - 2. All conveyance, treatment, storage, and disposal units shall be designed, constructed, operated, and maintained to prevent inundation or washout due to floods with a 100-year return frequency. - 3. Public contact with effluent (treatment works, percolation ponds) shall be precluded through such means as fences, signs, or acceptable alternatives. - 4. Objectionable odors shall not be perceivable beyond the limits of the WWTF property at an intensity that creates or threatens
to create nuisance conditions. - 5. Percolation ponds shall have sufficient capacity to accommodate allowable wastewater flow and design seasonal precipitation and ancillary inflow and infiltration during the winter. Design seasonal precipitation shall be based on total annual precipitation using a return period of 100 years, distributed monthly in accordance with historical rainfall patterns. - 6. On or about **1 October** of each year, available percolation pond capacity shall at least equal the volume necessary to comply with Discharge Specification C.5. - 7. Percolation ponds shall be managed to prevent breeding of mosquitoes. In particular, - a. An erosion control plan should assure that coves and irregularities are not created around the perimeter of the water surface. - b. Weeds shall be minimized through control of water depth, harvesting, and herbicides. - c. Dead algae, vegetation and other debris shall not accumulate on the water surface. - d. Vegetation management operations in areas in which nesting birds have been observed shall be carried out either before or after, but not during, the 1 April to 30 June bird nesting season. - 8. No waste constituent shall be released or discharged, or placed where it will be released or discharged, in a concentration or in a mass that caused violation of groundwater limitations. 9. The City shall not discharge effluent to Ponds 4 and 5 from 1 April through 30 September or when the separation between the Ponds' inverts and groundwater is less than five vertical feet. # D. Sludge Specifications Sludge in this document means the solid, semisolid, and liquid residues removed during primary, secondary, or advance wastewater treatment processes. Solid waste refers to grit and screening material generated during preliminary treatment. Residual sludge means sludge that will not be subject to further treatment at the WWTF. - 1. Sludge and solid waste shall be removed from screens, sumps, aeration basins, ponds, clarifiers, etc., as needed to ensure optimal plant operation. - Any handling and storage of residual sludge and solid waste on property of the WWTF shall be temporary (i.e., no longer than two years) and controlled and contained in a manner that minimizes leachate formation and precludes infiltration of waste constituents into soils in a mass or concentration that will violate the groundwater limitations of this Order. - 3. Residual sludge and solid waste shall be disposed of in a manner approved by the Executive Officer and consistent with Title 27. Removal for further treatment, disposal, or reuse at sites (i.e., landfill, composting sites, soil amendment sites) operated in accordance with valid waste discharge requirements will satisfy this specification. - 4. Use of biosolids as a soil amendment shall comply with valid waste discharge requirements issued by a regional water board or the State Water Board or a local (e.g., county) program authorized by a regional water board. In most cases, this means the General Biosolids Order (State Water Board Water Quality Order No. 2004-12-DWQ, "General Waste Discharge Requirements for the Discharge of Biosolids to Land for Use as a Soil Amendment in Agricultural, Silvicultural, Horticultural, and Land Reclamation Activities"). For a biosolids use project to be authorized by the General Biosolids Order, the Discharger must file a complete Notice of Applicability for each project. - 5. Any proposed change in sludge use or disposal practice shall be reported in writing to the Executive Officer at least 90 days in advance of the change. #### E. Groundwater Limitations - 1. Release of waste constituents from any treatment or storage component associated with the discharge shall not cause or contribute to groundwater: - a. Containing constituent concentrations in excess of the concentrations specified below or natural background quality, whichever is greater: - (i) Nitrate (as N) of 10 mg/L. - (ii) Total Coliform Organisms of 2.2 MPN/100 mL. - (iii) For constituents identified in Title 22, the MCLs quantified therein. - b. Containing taste or odor-producing constituents, toxic substances, or any other constituents in concentrations that cause nuisance or adversely affect beneficial uses. #### F. Provisions - 1. The Discharger shall comply with the *Standard Provisions and Reporting Requirements for Waste Discharge Requirements*, dated 1 March 1991, which are part of this Order. This attachment and its individual paragraphs are referred to as Standard Provision(s). - 2. The Discharger shall comply with MRP No. R5-2010-____, which is part of this Order, and any revisions thereto as adopted by the Central Valley Water Board or approved by the Executive Officer. The submittal dates of Discharger self-monitoring reports shall be no later than the submittal date specified in the MRP. - 3. The Discharger shall keep at the WWTF a copy of this Order, including its MRP, Information Sheet, Attachments, and Standard Provisions, for reference by operating personnel. Key operating personnel shall be familiar with its contents. - 4. The Discharger shall not allow pollutant-free wastewater to be discharged into the WWTF collection, treatment, and disposal systems in amounts that significantly diminish the system's capability to comply with this Order. Pollutant-free wastewater means storm water (i.e., inflow), groundwater (i.e., infiltration), cooling waters, and condensates that are essentially free of pollutants. - 5. The Discharger must at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) that are installed or used by the Discharger to achieve compliance with the conditions of this Order. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of back-up or auxiliary facilities or similar systems that are installed by the Discharger only when the operation is necessary to achieve compliance with the conditions of this Order. - 6. All technical reports and work plans required herein that involve planning, investigation, evaluation, or design, or other work requiring interpretation and proper application of engineering or geologic sciences, shall be prepared by or under the direction of persons registered to practice in California pursuant to California Business and Professions Code sections 6735, 7835, and 7835.1. To demonstrate compliance with sections 415 and 3065 of Title 16, CCR, all technical reports must contain a statement of the qualifications of the responsible registered professional(s). As required by these laws, completed technical reports and work plans must bear the signature(s) and seal(s) of the registered professionals(s) in a manner such that all work can be clearly attributed to the professional responsible for the work. - 7. The Discharger must comply with all conditions of this Order, including timely submittal of technical and monitoring reports as directed by the Executive Officer. Accordingly, the Discharger shall submit to the Central Valley Water Board on or before each report due date the specified document or, if an action is specified, a written report detailing evidence of compliance with the date and task. If noncompliance is being reported, the reasons for such noncompliance shall be stated, plus an estimate of the date when the Discharger will be in compliance. The Discharger shall notify the Central Valley Water Board by letter when it returns to compliance with the time schedule. Violations may result in enforcement action, including Central Valley Water Board or court orders requiring corrective action or imposing civil monetary liability, or in revision or rescission of this Order. - 8. In the event of any change in control or ownership of land or waste treatment and storage facilities presently owned or controlled by the Discharger, the Discharger shall notify the succeeding owner or operator of the existence of this Order by letter, a copy of which shall be immediately forwarded to the Central Valley Water Board. - 9. To assume operation under this Order, the succeeding owner or operator must apply in writing to the Executive Officer requesting transfer of the Order. The request must contain the requesting entity's full legal name, the state of incorporation if a corporation, the address and telephone number of the persons responsible for contact with the Central Valley Water Board and a statement. The statement shall comply with the signatory paragraph of Standard Provision B.3 and state that the new owner or operator assumes full responsibility for compliance with this Order. Failure to submit the request shall be considered a discharge without requirements, a violation of the California Water Code. If approved by the Executive Officer, the transfer request will be submitted to the Central Valley Water Board for its consideration of transferring the ownership of this Order at one of its regularly scheduled meetings. - 10. As a means of discerning compliance with Discharge Specifications C.4, the dissolved oxygen (DO) content in the upper one-foot of any percolation pond shall not be less than 1.0 mg/L for three consecutive days. Should the DO be below 1.0 mg/L during a weekly sampling event, the Discharger shall take all reasonable steps to correct the problem and commence daily DO monitoring in the affected percolation ponds until the problem has been resolved. If unpleasant odors originating from affected percolation ponds are noticed in developed areas, or if the Discharger received one or more odor complaints, the Discharger shall report the findings in writing within 5 days of the date and shall include a specific plan to resolve the low DO results to the Central Valley Water Board within 10 days of that date. - 11. The pH of the discharge shall not be less than 6.5 or greater than 8.3 pH units for more than three
consecutive sampling events. In the event that the pH of the discharge is outside of this range for more than three consecutive sampling events, the Discharger shall submit a technical evaluation in its quarterly SMRs documenting the pH of the discharge to the percolation ponds, and if necessary demonstrate that the effect of the discharge on soil pH will not exceed the buffering capacity of the soil profile. - 12. The City shall maintain and operate all percolation ponds sufficient to protect the integrity of containment levees and prevent overtopping or overflows. Unless a California civil engineer certifies (based on design, construction, and condition of operation and maintenance) that less freeboard is adequate, the operating freeboard in any percolation pond shall never be less than two feet (measured vertically). As a means of management and to discern compliance with this provision, the Discharger shall install and maintain in each percolation pond permanent markers with calibration that indicates the water level at design capacity and enables determination of available operational freeboard. - 13. The Discharger shall submit the technical reports and work plans required by this Order for consideration by the Executive Officer, and incorporate comments the Executive Officer may have in a timely manner, as appropriate. The Discharger shall proceed with all work required by the following provisions by the due dates specified. - 14. The Discharger shall continue to maintain coverage under, and comply with, Statewide General Waste Discharge Requirements For Sanitary Sewer Systems, Water Quality Order No. 2006-0003-DWQ and any revisions thereto as adopted by the State Water Board. - 15. **(By 1 year after adoption of Order)**, the Discharger shall conduct a salinity evaluation and submit a salinity minimization plan to identify and implement measures to reduce the salinity in the discharge to the extent feasible and to ensure continued compliance with Effluent Limitation B.3. The salinity minimization plan shall include a time schedule to implement the identified measures. - 16. (By 120 days after adoption of Order), the Discharger shall submit a technical report that evaluates the effectiveness of the phytoremediation project and proposes a course of action to ensure that impacted groundwater is remediated. The technical report shall include a proposed time schedule for completing specific actions. The Discharger shall implement the plan according to the time schedule upon approval of the Executive Officer. - 17. The Discharger shall evaluate land disposal options and conduct studies to promote new or expanded wastewater recycling and reclamation opportunities. If the studies show that year-round or continuous reuse of all the wastewater is not practicable, consideration must be given to partial reuse of the flow and seasonal reuse. (By 90 days after adoption of Order), and periodically thereafter (but not less than once every five years) the Discharger shall document its efforts in its fourth quarterly monitoring report to promote new or expanded wastewater recycling and reclamation opportunities. - 18. Discharge flow shall be limited to 4.69 mgd until the Discharger has submitted an engineering report certifying the WWTF has sufficient treatment, storage, and disposal capacity to comply with a monthly average discharge flow limit of 5.0 mgd and with other terms and conditions of this Order. The report must be prepared by a California Registered Civil Engineer. This provision will be considered satisfied following written acknowledgment from the Executive Officer that the report is adequate. | I, PAMELA C. CREEDON, Executive Officer, do hereby certify the foregoing is a full, true | |--| | and correct copy of an Order adopted by the California Regional Water Quality Control | | Board, Central Valley Region, on | PAMELA C. CREEDON, Executive Officer # Order Attachments: A Site Location Map B Flow Schematic Monitoring and Reporting Program No. R5-2010-____ Information Sheet Standard Provisions (1 March 1991) DMS/wdh: 09/30/2010